Energetics of defects on graphene through fluorination.

نویسندگان

  • Jie Xiao
  • Praveen Meduri
  • Honghao Chen
  • Zhiguo Wang
  • Fei Gao
  • Jianzhi Hu
  • Ju Feng
  • Mary Hu
  • Sheng Dai
  • Suree Brown
  • Jamie L Adcock
  • Zhiqun Deng
  • Jun Liu
  • Gordon L Graff
  • Ilhan A Aksay
  • Ji-Guang Zhang
چکیده

Functionalized graphene sheets (FGSs) comprise a unique member of the carbon family, demonstrating excellent electrical conductivity and mechanical strength. However, the detailed chemical composition of this material is still unclear. Herein, we take advantage of the fluorination process to semiquantitatively probe the defects and functional groups on graphene surface. Functionalized graphene sheets are used as substrate for low-temperature (<150 °C) direct fluorination. The fluorine content has been modified to investigate the formation mechanism of different functional groups such as C-F, CF2, O-CF2 and (C=O)F during fluorination. The detailed structure and chemical bonds are simulated by density functional theory (DFT) and quantified experimentally by nuclear magnetic resonance (NMR). The electrochemical properties of fluorinated graphene are also discussed extending the use of graphene from fundamental research to practical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-selective local fluorination of graphene induced by focused ion beam irradiation

The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approac...

متن کامل

Fluorination of graphene enhances friction due to increased corrugation.

The addition of a single sheet of carbon atoms in the form of graphene can drastically alter friction between a nanoscale probe tip and a surface. Here, for the first time we show that friction can be altered over a wide range by fluorination. Specifically, the friction force between silicon atomic force microscopy tips and monolayer fluorinated graphene can range from 5-9 times higher than for...

متن کامل

Effect of Defects on Mechanical Properties of Graphene under Shear Loading Using Molecular Dynamic Simulation

Graphene sheet including single vacancy, double vacancy and Stone-Wales with armchair and zigzag structure was simulated using molecular dynamics simulation. The effect of defects on shear’s modulus, shear strength and fracture  strain was investigated. Results showed that these shear properties reduce when the degrees of all kinds of defects increase. The dangling bond in SV and DV defected gr...

متن کامل

Carbon nanoscroll from C4H/C4F-type graphene superlattice: MD and MM simulation insights.

Morphology manipulation opens up a new avenue for controlling and tailoring the functional properties of graphene, enabling the exploration of graphene-based nanomaterials. Through mixing single-side-hydrogenated graphene (C4H) with fluorinated graphene (C4F) on one single sheet, the C4H/C4F-type graphene superlattices can self-scroll at room temperature. We demonstrate using molecular dynamic ...

متن کامل

A BEG Model of Graphene Fluorination

In this paper, we model the fluorination of graphene as a Blume-Emery-Griffiths model with nearest neighbor interactions on a two-dimensional hexagonal lattice. Using Monte Carlo simulation methods, the phase diagram is found to be quite rich, containing a variety of phases. Thermodynamic crumpling is thought to be critical for the stability of freestanding graphene at finite temperature. We ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ChemSusChem

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 2014